Varíous Aspects of the 2HDM and Beyond

M. Margarete Mühlleitner Karlsruhe Institute of Technology 15 June 2022

The The Gradar & Marsed fist ber Sitchada Hyd Woodpellete

The Standard Model is Structurally Complete - But

Status

M. Mühlleitner, KIT, 22 June 2022

*Experimental reality: No Beyond the Standard Model Physics discovered so far! Guido Altarelli, 16/1/12, KIT: "The situation is depressing, but not desperate."

We have the SM-like Higgs boson
 What can we learn from Higgs physics?

Why extended Higgs sectors?

- * fermion/gauge sectors not minimal why should the Higgs sector be minimal?
- * extended Higgs sectors:
 alleviate metastability, DM candidate, additional sources of CP-violation ← baryogenesis
- * many new physics models require extended Higgs models supersymmetry!

How systemize approach not to miss any new physics sign?

* effective theory (rather model-independent, new physics effects at high energy scales)

Extended Higgs Sectors

Extended Higgs Sectors

Guidelines for model selection

- * simplicity
- * compatibility with relevant experimental and theoretical constraints
- * solve (some of the) flaws of the SM
- * testable in experiment

\mathcal{E} xperimental \mathcal{C} onstraints on \mathcal{E} xtended \mathcal{H} iggs \mathcal{S} ectors

- Electroweak ρ parameter very close 1: simplest solution Higgs singlets and doublets
- Flavor-changing neutral currents (FCNCs): symmetries so that all right-handed fermions of given electric charge couple to exactly one Higgs doublet (*e.g.* (N)2HDM type I...IV); minimal flavour violation

• Further Constraints

- * EWPTs ($\leftarrow S, T, U$)
- * Flavour constraints $(B \rightarrow X_s \gamma, R_b, ...)$
- * Higgs data (\leftarrow 125 GeV SM-like Higgs required, direct searches for additional Higgs bosons)
- * Direct searches for new particles predicted by the model
- * Low-energy observables
- * Relic density (models w/ DM candidate)
- * EDM constraints (← models w/ CP violation)

\mathcal{T} heory \mathcal{C} onstraints on \mathcal{E} xtended \mathcal{H} iggs \mathcal{S} ectors

- Higgs potential bounded from below
- EW vacuum global minimum
- Perturbative unitarity

Parameter scans with constraints: Reduction of the parameter space to the allowed parameter space \rightsquigarrow sharpen predictions for the models!

The 2HDM

+ Singlet and Doublet Extensions:

Compatible with ρ parameter; prominent example of 2HDM: supersymmetry, but SUSY relations constrain model

+2 complex Higgs doublets: motivation: baryogenesis, DM, stability of EW vacuum

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

discrete symmetry $\Phi_1 \rightarrow \Phi_1 \text{ and } \Phi_2 \rightarrow -\Phi_2$ softly broken

 + Higgs spectrum after EWSB: 2 CP-even h,H with m_h < m_H, 1 CP-odd A, charged Higgs pair H[±]

+Possible scenarios: h SM-like or H SM-like

[Aboouid, Arhrib, Azevedo, Ferreira, El Falaki, MM, Santos, '21]

mH± > 800 GeV [Misiak,Rehman,Steinhauser,'20]

High-scale impact on alignment in 2HDMs

[Basler,Ferreira,MM,Santos,'17]

Left: type I, right: type II Alignment for $m_{H\pm} \gtrsim 500$ GeV and validity up to the Planck scale (theor.&exp. constraints included)

See also [Chakrabarty eal; Bhupal Dev eal; Das,Saha; Chowdhury,Eberhardt; Ferreira eal; Cacchio eal; Cherchiglia,Nishi; Krauss eal; Goodsell,Staub; Braathen eal; ...]

The N2HDM

+2 Higgs doublets and a real singlet field:

[Chen eal,'13; MM eal,'17; Engeln eal,'19]

Motivation: baryogenesis, DM, rich phenomenology

+ The Higgs potential:

$$V_{
m N2HDM} ~=~ V_{
m 2HDM} + rac{1}{2}m_S^2\Phi_S^2 + rac{\lambda_6}{8}\Phi_S^4 + rac{\lambda_7}{2}(\Phi_1^\dagger\Phi_1)\Phi_S^2 + rac{\lambda_8}{2}(\Phi_2^\dagger\Phi_2)\Phi_S^2$$

discrete symmetry $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, $\Phi_S \to \Phi_S$ and softly broken $\Phi_1 \to \Phi_1$, $\Phi_2 \to \Phi_2$, $\Phi_S \to -\Phi_S$.

+ Higgs spectrum after EWSB: 3 CP-even H_{1,2,3} with m_{H1} < m_{H2} < m_{H3}, 1 CP-odd A, charged Higgs pair H[±]

+ Possible scenarios: H_{1,2,3}

Possible vacua in the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM)

M. Mühlleitner, KIT, 22 June 2022

The C2HDM

+ The CP-Violating 2HDM:

[Ginzburg,Krawczyk,Osland,'02]

Motivation

- can provide a strong first order electroweak phase transition (like 2HDM)
- has additional sources of CP violation (required by electroweak baryogenesis)
- has rich phenomenology, in particular interesting di-Higgs signatures

+ The Model: 2 complex Higgs doublets Φ_1 , Φ_2 ,

CP-violating scalar potential w/ softly broken \mathbb{Z}_2 symmetry $\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2$

$$\begin{split} V &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - \left(m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c.\right) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.\right] \,. \end{split}$$
complex

+ After EWSB:
$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix}$$
 and $\Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$

CP violation for $\phi(\lambda_5)
eq 2 \, \phi(m_{12}^2)$

[Aboouid,Arhrib,Azevedo,Ferreira,El Falaki,MM,Santos,'21

+EDM measurements: place stringent constraints on size of CP-violating phase After taking into account all relevant theoretical and experimental constraints still possible

 $H_2 = h_{125}$

[Fontes,MM,Romao,Santos,Silva,Wittbrodt,'17]

h₁₂₅ couples like pseudoscalar to down-type fermions, like scalar to up-type fermions

Example: Higgs search in tau final states

Higgs Pair Production

+Ultimate test of the Higgs mechanism:

$\mathcal M$ easurement of the scalar boson self-couplings	\mathcal{E} xperimental verification
and	\mathcal{O} f the scalar sector of the
Reconstruction of the EWSB potential	\mathcal{E} WSB mechanism

- + Test of Higgs self-couplings at colliders :
 - λ_{HHH} via Higgs pair production
 - λ_{HHHH} via triple Higgs production

+ SM Higgs pair production at the LHC - dominant process: gluon fusion

 $\sqrt{s} = 13 \text{ TeV}: \sigma_{tot} = 31.05^{+6\%}_{-23\%} \text{ fb}$

SM: destructive interference triangle and box diagrams

Challenge: small cxn and large QCD bkg

at FT_{approx} : full NNLO QCD in the heavy-top-limit with full LO and NLO mass effects and full mass dependence in the one-loop double real corrections at NNLO

 $\downarrow V(\phi)$

SM Higgs Pair Production

+ SM Higgs pair production at the LHC - dominant process: gluon fusion

* SM: destructive interference triangle and box diagrams

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

Next-to-Leading Order gg->HH with Full Mass Dependence

[Baglio,Campanario,Glaus,MM,Streicher,Spira,'18] (see also [Borowka,Greiner,Heinrich,Jones,Kerner,Schlenk,Schubert,Zirke,'16])

inclusive: -15% mass effects on top of LO exclusive: even more

Challenge Measurement

+Cross section:

[Grazzini eal'19] for extensive list of refs. see |di Micco eal'19]

$$\sqrt{s} = 13 \text{ TeV}: \sigma_{tot} = 31.05^{+6\%}_{-23\%} \text{ fb}$$

at FT_{approx}: full NNLO QCD in the heavy-top-limit with full LO and NLO mass effects and full mass dependence in the one-loop double real corrections at NNLO

Challenge: small cross sections and large QCD backgrounds

Experimental Results - Limits on Trilinear Higgs Self-Coupling

New Physics Effects in Higgs Pair Production

Cross section: - different trilinear couplings - different Yukawa couplings
 novel particles in the loop - resonant enhancement

+Example NMSSM:

[taken from Dao,MM eal'13]

Overview of Higgs Pair production possibilities including theoretical and experimental constraints in archetypical BSM Higgs sectors including different symmetries

provide benchmark points / lines / planes for experiment

Allowed Coupling Deviations

[Abouabid, Arhrib, Azevedo, ElFalaki, Ferreira, MM, Santos, '21]

	R2HDM		C2HDM	
	$y_{t,H_{ m SM}}^{ m R2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m R2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m C2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m C2HDM}/\lambda_{3H}$
light I	0.8931.069	-0.0961.076	0.8981.035	-0.0351.227
medium I	n.a.	n.a.	0.8891.028	0.2511.172
heavy I	0.9461.054	0.4811.026	0.8931.019	0.6711.229
light II	0.9511.040	0.6920.999	0.9561.040	0.0960.999
medium II	n.a.	n.a.	_	_
heavy II	—	_	_	—
	N2HDM		NMSSM	
	$y_{t,H_{ m SM}}^{ m N2HDM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m N2HDM}/\lambda_{3H}$	$y_{t,H_{ m SM}}^{ m NMSSM}/y_{t,H}$	$\lambda_{3H_{ m SM}}^{ m NMSSM}/\lambda_{3H}$
light I	0.8951.079	-1.1601.004	n.a.	n.a.
medium I	0.8741.049	-1.2471.168	n.a.	n.a.
heavy I	0.8931.030	0.7701.112	n.a.	n.a.
light II	0.9421.038	-0.6080.999	0.8261.003	0.0240.747
medium II	0.9421.029	0.6130.994	0.9161.000	-0.5020.666
heavy II	—	_	_	_

[Abouabid, Arhrib, Azevedo, El Falaki, Ferreira, MM, Santos, 21]

H₂=H_{SM}

800

1200

900

1000

NMSSM

Maximum Cross Section Values - Resonant Production

SM-like Model	H1	H2
R2HDM T1	444 fb	
R2HDM T2	81 fb	
C2HDM T1	387 fb	47 fb
C2HDM T2	130 fb	no point
N2HDM T1	376 fb	344 fb
N2HDM T2	188 fb	63 fb
NMSSM	183 fb	65 fb

NLO SM HH production (in the heavy top limit): 38 fb

Implications of Baryogenesis

A.

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

- * (i) B number violaton (sphaleron processes)
- * (ii) C and CP violation
- * (*iii*) Departure from thermal equilibrium
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\left< \Phi_c \right>}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

[Sakharov '67]

Baryogenesis in a Nutshell

2HDM Type I w/ h SM-like Higgs

[Basler,Krause,MM,Wittbrodt,Wlotzka,'17]

SFOEWPT favor large mass splittings between A and H, but also other scenarios are found; ξ_c up to 4.5

C2HDM: SFOEWPT and Mass Spectrum

SFOEWPT tightens mass gap: $\Delta_{m_{H_i}, m_{H_j}} = \min_{\substack{m_{H_i} \neq m_{H_j}}} \left| m_{H_i} - m_{H_j} \right|$ with $H_{i,j} \in \{h, H_{\downarrow}, H_{\uparrow}, H^{\pm}\}$ Type I : $\max_{\text{sample}} \Delta_{m_{H_i}, m_{H_j}} \approx 61 \text{ GeV} \xrightarrow{\text{EWPT}} \approx 21 \text{ GeV}$ Type II : $\max_{\text{sample}} \Delta_{m_{H_i}, m_{H_j}} \approx 62 \text{ GeV} \xrightarrow{\text{EWPT}} \approx 33 \text{ GeV}$

M. Mühlleitner, KIT, 22 June 2022

2HDM Working Group Meeting

Conclusions

+ Flaws of SM call for new physics; no direct signs of new physics => Higgs boson

+ Insights

- in allowed parameter ranges of the BSM models, in scale of new physics
- in mechanism of mass generation, structure & dynamics of electroweak symmetry breaking

life, the universe but and everything!

- in nature of Dark Matter
- in baryogenesis
- in flavor/CP puzzle
- ✤ Interesting times ahead!

 Image: With the second seco

Bijou

Bijou

How Define Resonant di-Higgs Production?

Additional Higgs bosons H_k : possible resonant enhancement of the di-Higgs cross section

- * If m_{Hk} < m_{Hi} + m_{Hj} then clear case of "non-resonant" production
- If m_{Hk} > m_{Hi} + m_{Hj} : resonance contribution may be suppressed due to small couplings, large masses, large widths or destructive interference effects

From an experimental point of view the cross section would not be distinguishable from "non-resonant" production then. => Our recipe:

- * HiggsBounds turned off for di-Higgs
- * Use SusHi to calculate $\sigma(H_k)$ for all possible intermediate resonances H_k at NNLO QCD
- * Calculate $\sigma(H_k) \times BR(H_k \rightarrow H_{SM}, H_{SM})$ and compare it with experiment
- * Exception: exp. limits assume narrow resonance -> we keep points if $(\Gamma_{tot}(H_k)/m_{Hk})_{limit} > 5\%$

Provided final states on request: 4b, (2b)(2tau), (2b)(2gamma), (2b)(2W), (2b)(2Z), (2W)(2gamma), 4W

Suppress interfering Higgs signals by excluding scenarios with neighboring Higgs masses below 5 GeV.

Impact of Di-Higgs Searches on N2HDM parameter space

Cross section resonantly dominated if $\sigma(H_k) \times BR(H_k \rightarrow H_{SM} + H_{SM}) > 0.1 \sigma(H_k + H_k)$ Non-resonant experimental search limits applied

